数据解读

 数据解读     |      2020-02-11

图片 1

图片 2

屠呦呦接受美国《临床研究期刊》访谈

图片 3

根据拉瓦尔大学和魁北克大学研究中心的研究人员在化学通讯发表的一项研究,解决疟疾致病寄生虫增加耐药性问题的办法可能来自北方。该团队成功合成了在努纳武特的微观真菌中发现的分子,并证明了它们对抗疟疾寄生虫的体外功效。

引起疟疾的疟原虫属寄生虫通过被感染的蚊子叮咬而传播给人类。寄生虫设法适应这两个完全不同的宿主,因为它们基因组的可塑性使它们能够根据需要进行适应。巴斯德研究所(Institut Pasteur)和CNRS的科学家决定研究这种可塑性背后的表观遗传机制,特别是DNA甲基化。他们确定了能够抑制DNA甲基化并有效杀死甚至最抗药性的恶性疟原虫的分子。他们的研究结果于2019年11月27日发表在ACS Central Science杂志上。

“生物医学的发展主要通过两种不同的途径,一是发现,二是发明创造。”——诺贝尔医学奖得主约瑟夫·戈尔斯坦“很荣幸,这两条路我都走了”——本年度拉斯克奖得主屠呦呦青蒿是传统中药,最早载于《五十二病方》。《本草经》名草蒿,又名青蒿,自公元340年东晋葛洪《肘后备急方》以后,各代书籍屡有青蒿治疗疟疾的记载。但是,“原生态中药”就其外观、质量控制、效价、适应证、服用方法等,很难被国际上接受。所以,青蒿素类药物的成功,不但是世界抗疟药物的一大突破,而且在中药现代化和国际化方面也是一个典范。据世卫组织最新的2009年统计数据,世界上约有2.5亿人感染疟疾,将近1百万人因感染疟原虫而死亡,如果没有屠呦呦发现的青蒿素,那么2.5亿疟疾感染者中将有更多的人无法幸存下来。中国中医研究院的屠呦呦和她的课题组,经过多年的研究探索,提取了中国传统中草药青蒿中的有效成份青蒿素,成为如今最有效的疟疾防治药物。最早治疗疟疾的药物是奎宁,一种取自于金鸡纳树树皮的药物。1934年科学家合成了疟疾特效药之一氯喹,因其毒副作用至少被搁置了10年,直到二次大战期间,美国进行的临床实验表明氯喹是一种非常有效的抗疟药物,1947年才被引入临床实践,用于预防和治疗疟疾。遗憾的是,后来又出现了一些对氯喹产生抗药性的疟原虫。青蒿抗疟效果发现的过程由疟原虫引起的疟疾几千年来一直是威胁人类生命的传染性疾病,上世纪50年代,由于疟原虫对氯喹等现有抗疟疾药物产生了抗药性,一度被压制的疟疾又卷土重来,研制新的抗疟疾药物已是刻不容缓。1967年,由中国60多个研究机构、500多名植物化学和药理学研究人员共同参与,旨在尽快研制出抗疟新药的“523项目”正式启动,1969年初,屠呦呦被任命为中国中医研究院中药研究所“523项目”的课题组长,在中国传统医学医药宝库中寻找分离治疗疟疾的有效成份。生物学家和医学家、诺贝尔医学奖得主约瑟夫·戈尔斯坦曾说,生物医学的发展主要通过两种不同的途径,一是发现,二是发明创造,而屠呦呦作为一位植物化学家,特别是在20世纪60年代至80年代期间,却有幸同时通过这两种途径发现了青蒿素及其抗疟功效,开创了人类抗疟之路的一个新的里程碑,为人类作出了巨大的贡献,她和她的同事们挽救了数百万人的生命,并得到了世卫组织和世界医学界的肯定和高度赞赏。自1969年起,屠呦呦和她的研究小组查阅了大量文献资料,经过一次又一次的失败和两年的艰苦努力,在2000多种中草药中筛选出了最有希望的青蒿,但初期研究并非一帆风顺,最初的实验结果并不十分理想。在查阅了大量文献后,屠呦呦在公元340年间东晋葛洪的《肘后备急方》中发现了对青蒿治疗方法的描述:“青蒿一握,以水二升渍,绞取汁,尽服之。”为何古人将青蒿“绞取汁”,而不用传统的水煎熬煮中药之法呢?屠呦呦意识到可能是煮沸和高温提取破坏了青蒿中的活性成份,于是她改变了原来的提取方法,以低沸点溶剂乙醚来提取其有效成份,并去除了没有抗疟活性且有毒副作用的酸性部分,保留了抗疟活性强、安全可靠的中性部分,在明显提高青蒿防治疟疾效果的同时,也大幅降低了其毒性。1971年提取的编号为191的青蒿萃取液,在治疗被P.berghei疟原虫感染的小鼠和被P.cynomolgi疟原虫感染的猴子时,有效率达到了100%。这一发现是青蒿中有效成份青蒿素发现过程中的一个重大突破。尽管从中国传统医学文献中得到了很大的启发,但大量筛选鉴别工作还需要屠呦呦亲自去做。例如,青蒿只是传统中草药中的一个类别,其中包括了6种不同的中草药,每一种都包含了不同的化学成份,治疗疟疾的效果也有所不同。葛洪的著作中并没有具体指明哪一种青蒿可用来治疗疟疾,也没有指明入药的是青蒿植物的哪一部分,是根,茎,还是叶子?“523项目”云南的研究人员发现,有一种学名叫做“黄花蒿”的青蒿提取物对治疗疟疾最有效,但这种效果在之后的实验中并没有重复出现,与文献记载中所说的效果并不完全吻合,这又是怎么回事?为了弄清楚这是怎么回事,屠呦呦一方面继续在文献中寻找答案,一方面进行实验求证。反复实验和研究分析,屠呦呦发现青蒿药材含有抗疟活性的部分是叶片,而非其它部位,而且只有新鲜的叶子才含有青蒿素有效成份。此外,课题组还发现了最佳采摘时机是在植物即将开花之前,那时叶片中所含的青蒿素最为丰富。屠呦呦还对不同产地“黄花蒿”中的青蒿素含量进行了分析评估。她说:“所有这些不确定因素,正是导致我们初期研究结果不理想不稳定,并让我们备感困惑的原因。”然而,她在研究中的坚持和毅力却着实令人敬佩。从分子结构到药物研制青蒿素治疗疟疾在动物实验中获得了完全的成功,那么,它对人类也有效吗?作用于人类身上是否安全有效呢?为了尽快确定这一点,屠呦呦和她的同事们勇敢地充当了首批志愿者,在他们自己身上进行实验,在当时没有关于药物安全性和临床效果评估程序的情况下,这是他们用中草药治疗疟疾获得信心的唯一办法。她表示:“我们需要尽可能快地证明这种好不容易发现的治疟药物的临床效果,这就是我们以身试药的真正动机。”在自己身上实验获得成功之后,屠呦呦和她的课题组深入到海南地区,进行实地考察。在21位感染了Plasmodium.vivax和P.falciparum这两种疟原虫的患者身上试用之后,发现青蒿素治疗疟疾的临床效果出奇之好,与使用氯喹的病人对照组疟疾病人相比较,使用青蒿素治疗的病人很快退烧,血液中的疟原虫也很快消失。屠呦呦下一步要做的就是提取青蒿中的有效成份。之前,青蒿中的有效成份青蒿素未提纯分离出来,这种有效成份的化学结构也还未知。1972年,屠呦呦和她的同事在青蒿中提取到了一种分子式为C15H22O5的无色结晶体,一种熔点为156℃~157℃的活性成份,他们将这种无色的结晶体物质命名为青蒿素。屠呦呦知道,正如约瑟夫·戈尔斯坦所说的那样,这一发现只是第一步,接下来的第二步才是创造性的工作,如何将这种具有抗疟功效的天然分子转化为一种强效抗疟药物。接下来对疟疾患者的临床实验表明,屠呦呦他们分离出来的晶体,即青蒿素的抗疟疾效果极好,他们终于找到了一种抗疟疾的有效药物。屠呦呦说:“我们注意到,病人开始退烧,这是疟疾患者症状消除,病情好转的迹象。更重要的是,我们还发现,病人血样中的疟原虫也消失了。这时候,我们得出结论,这种药物不仅仅只是减轻症状,而是能够治愈这种疾病。我们观察发现,青蒿素能够在疟原虫生命周期中任何一个阶段将其杀灭。”1979年12月,青蒿素最早的英文报道出现时,青蒿素及其衍生物已在2000名病患者身上进行了测试,其中一些患者感染了氯喹抗药性疟原虫。屠呦呦研究小组最初进行临床测试的药物形式是片剂,但结果并不太理想,后来改成一种新的形式——青蒿素提纯物的胶囊,由此开辟了发明一种抗疟疾新药的道路。除了考虑药物的配方和生产之外,屠呦呦和她的研究小组还考虑如何将这一发现推向世界,以造福于全人类。1973年,屠呦呦合成出了双氢青蒿素,以证实其羟氢氧基族的化学结构,但当时她却不知道自己合成出来的这种化学物质以后被证明比天然青蒿素的效果还要强得多。1975年,在中国科学院上海有机所和中科院生物物理所的协助下,确定了青蒿素的立体化学结构。走向世界的青蒿素上世纪70年代中期,广州中医药大学的李国桥教授用青蒿素和其衍生物进行了临床试验,试验结果表明,以青蒿素为基础的抗疟药物比一些传统抗疟药物,如氯喹和奎宁有着更好的疗效。继第一次大规模试验之后,香港远东研究基金会的基斯·阿罗德加入到了李国桥对青蒿素的测试研究中,两年后,他们联合发表了一篇有关青蒿素临床试验的论文。之后,他们将青蒿素与其它已知抗疟疾药物进行对比,在不增加副作用的情况下,青蒿素的疗效明显有所提高。多年的临床实践表明,青蒿素被认为是目前最为有效的抗疟药物。1977年,青蒿素的化学结构公开发表,同一年,青蒿素的分子式和相关论文很快被美国《化学文摘》所引用。1979年,中国科学技术委员会授予屠呦呦科研小组的此项工作为国家科技发明奖,以表彰他们发现青蒿素及其抗疟疾功效。1981年,由联合国开发计划署、世界银行和世界卫生组织发起,在北京举办的抗疟疾科研工作小组第四次会议上,青蒿素及其抗疟功效引起了热烈的反响。屠呦呦在会议上第一个发言,作了关于青蒿素研究的学术报告。上世纪80年代,青蒿素及其衍生药物在中国治愈了成千上万名感染了疟原虫的患者,并引起了世界广泛的关注。2005年,世界卫生组织宣布采用青蒿素综合疗法的策略,ACT疗法可大大减轻疟疾的各种症状,在世界各地被普遍采用,挽救了无数的生命,大多数为非洲的儿童。遗憾的是,目前一些对青蒿素产生了抗药性的疟原虫已经出现。屠呦呦对此深感忧虑,她说,“像这一领域内的其他研究人员一样,对最近一些报告中提及到对青蒿素产生抗药性疟原虫的出现,我深感忧虑。世卫组织为此作出了正确的战略决策,建议为了避免出现这种抗性,须停止单一使用青蒿素的治疗方法。一些地区大规模使用青蒿素作为预防疟疾的做法确实让我感到忧虑,这是产生药物抗药性的一种潜在因素,我希望国际社会采取一些负责任的措施,规范疟疾治疗方法,停止对青蒿素的药物滥用。”当被问及对这一重大发现的感触时,屠呦呦表示,很难描述自己的心情,特别是在经过了那么多次的失败之后,当时自己都怀疑路子是不是走对了,当发现青蒿素正是疟疾克星的时候,那种激动的心情也是难以表述的。屠呦呦对获得2011年拉斯克奖深感荣幸,她表示,自己只是一个普通的植物化学研究人员,但作为一个在中国医药学宝库中有所发现,并为国际科学界所认可的中国科学家,她为此感到自豪。更多阅读《临床研究期刊》网站报道原文南方周末:谁发现了青蒿素和三氧化二砷拉斯克基金会介绍屠呦呦获奖工作周维善院士讲述青蒿素结构测定经过青蒿素:源自中草药园的发现屠呦呦获2011年拉斯克奖相关专题:屠呦呦获拉斯克奖

►中科院上海植生生态所等发现能在按蚊中进行持续跨代传播的新共生细菌,能高效驱动抗疟效应分子快速散播到整个蚊群中,使按蚊成为无效的疟疾媒介,实现从源头上阻断疟疾传播。图片由中科院上海植生生态所提供。

研究人员观察到2017年在努勒维特Frobisher Bay沉积物中发现的微观真菌分子与已知的抗疟化合物结构相似。然而,真菌中仅存在非常少量的这些分子,称为mortiamides。为了研究这些分子对抗疟疾的功效,我们需要更多,而获得更多的唯一途径是合成它们,拉瓦尔大学科学与工程学院研究负责人兼化学教授Normand Voyer解释说。由于我们实验室开发了一种新方法,我们能够获得足量的mortiamides。

每年,疟疾影响全球2亿多人,并且抗疟疾治疗方法的抵抗力正在不断增强。这种传染病是由能适应各种环境的疟原虫引起的。在寄生虫的生命周期中,它先生活在蚊子的唾液腺中,然后再感染人类宿主的肝脏和血液。在周期的每个阶段,表观遗传机制(例如组蛋白或DNA修饰)调节寄生虫基因的表达,从而使特定基因在特定时间在细胞中表达,从而使寄生虫能够适应其环境。 Flore Nardella,寄主-寄生虫相互作用生物学实验室(Institut Pasteur / CNRS / Inserm)的合同研究员。

作为一种古老的疾病,疟疾已经有几千年的历史。即使是在21世纪的今天,包括非洲、东南亚、拉丁美洲以及中东地区的近百个国家和地区受到疟疾的影响。根据世界卫生组织2016年12月公布的最新估算数据,2015年全球有2.12亿起疟疾病例,42.9万人死亡。

一旦完成该步骤,Voyer博士就请求拉瓦尔大学医学院教授疟疾专家Dave Richard评估杀螨剂对恶性疟原虫(Plasmodium falciparum)的活性,恶性疟原虫是导致约50%所有疟疾病例的寄生虫。我们的前提是寄生虫不能抵抗这些北方分子,因为它从未暴露于它们,沃伊教授说。使用常见的寄生虫菌株和多重耐药菌株的测试证明了研究人员的正确性:在不到72小时内,四种杀螨剂中的三种停止了两种寄生虫菌株的生长。

在2019年,由CNRS科学家Artur Scherf领导的她的实验室证明了表观遗传学DNA修饰对寄生虫生命周期的重要性。巴斯德研究所的表观遗传化学生物学实验室在DNA甲基转移酶抑制剂领域拥有无与伦比的专业知识。因此,两个团队共同合作鉴定能够抑制DNA甲基化并杀死寄生虫的分子是合乎逻辑的。 Artur的团队对疟疾的表观遗传机制有透彻的了解,我们拥有一个原始的化学文库,其中含有针对这些修饰进行了优化的抑制剂, CNRS研究主任兼该部门负责人Paola B. Arimondo解释说。表观遗传化学生物学组(巴斯德研究所/ CNRS)。

疟疾由一种叫做疟原虫的单细胞寄生引发,这些寄生虫通过受感染的雌性疟蚊叮咬传至人类。因此,对疟蚊的控制被认为是预防疟疾的重要手段。目前,人们主要通过化学杀虫剂杀死疟蚊。但是,化学杀虫剂虽然见效快,但效果不持久,而且在经过多年使用后,蚊虫已产生了广泛的抗药性。随着分子生物学和基因工程技术的发展,通过对蚊子的遗传控制和共生微生物控制,使疟蚊失去传播疟疾的能力,成为人们研究的热点之一。

这些分子的抗疟功效目前是适中的,但我们的结果表明,有可能产生类似物,在较低剂量下,对寄生虫更有效,Voyer教授坚持说。此外,由于我们现在可以合成这些分子,因此更容易确定它们的作用方式。一旦我们知道它们对寄生虫有毒,为什么我们可以开发出更有针对性的药物。

因此,科学家决定研究恶性疟原虫的寄生虫,特别是巴斯德巴斯德研究所(Psteur du Cambodge)提供的抗青蒿素菌株。在第一批体外实验中,允许恶性疟原虫寄生虫与人红细胞相互作用,以便它们可以感染并在其中生长。然后测试了70多个抑制甲基化的分子,以评估其功效和与寄生虫相关的特异性。Flore Nardella回忆说:我们测试了第一个分子后,就看到了与氯喹等药物相当的活性。在测试新的分子库时,这种情况非常罕见。抑制剂分子非常有效,其中一些杀死了仅在6小时内血液中的恶性疟原虫就会被寄生虫感染。 Paola B. Arimondo补充说。

最近,中科院上海植物生理生态研究所王四宝研究组与美国约翰霍普金斯大学的合作者首次确认了一种名叫沙雷氏菌属的新菌株AS1可以有效地杀死寄生在蚊子身上的疟原虫。这种细菌不仅能稳定地定殖在疟蚊中肠、雌蚊卵巢和雄蚊附腺,并且产生增殖,还可通过交配由雄蚊传递给雌蚊,也能通过雌蚊产卵传递给后代幼虫。此外,研究人员经过一年的努力,成功地通过基因工程构建出能同时分泌表达5个具有不同作用机制的抗疟基因的菌株,能够有效减少92-93%的疟原虫卵囊,抑制蚊子感染疟原虫。北京时间9月29日凌晨2时,《科学》在线发表了这一研究。

然后,科学家们继续他们的研究。在第二系列实验中,对耐药菌株进行了最有效分子的测试,结果再一次是结论性的:这些分子有效杀死了血液中的寄生虫。Paola B. Arimondo总结说:这项研究首次表明,血液中的寄生虫,包括青蒿素抗性菌株,可以通过靶向DNA甲基化而被快速杀死。鉴于特别是在东南亚观察到的治疗失败,寻找新的治疗靶点非常重要。甲基化可以为与青蒿素联用可以消除耐药性寄生虫的新药铺平道路。 Flore Nardella补充说。

“这篇Science文章从传播媒介入手,从传播阻断的角度入手,这是一种新型而有趣的策略,”同济大学医学院疟疾研究课题组组长张青锋教授评论说,“该研究不仅为人类从源头上阻止疟疾传播提供一个有应用前景的新方法,也为人类防控其它蚊媒传染病提供了新的思路。”

在研究的第三阶段,科学团队在感染了伯氏疟原虫的小鼠体内测试了抑制剂。该方法再次证明是成功的:该治疗杀死了血液中的寄生虫,小鼠幸免于脑疟疾感染。两个研究小组的下一步工作是继续优化最有前途的分子的选择性和功效(这对于要在人类中使用的分子来说至关重要),并确定可能在负责寄生虫其他发育阶段的分子用于传输。

美国德克萨斯大学医学分部病理学系助理教授Grant L. Hughes也对这一研究给予了肯定。“这项研究非常重要,因为它表明与蚊子肠道相关的细菌可以通过垂直和性传播的方式在蚊子群体之间传播。”Hughes说,以前有很多工作发现了能干扰蚊子体中病原体的蛋白质,“结合这些新的发现,意味着这种干预策略对于进一步研究控制疟疾来说是一种有效而有前景的方法”。

有趣的是,能够杀死疟原虫的沙雷氏菌属的新菌株AS1是王四宝和同事从蚊子的卵巢中分离出来的,而人们一般认为蚊子的卵巢中不存在细菌。

2012年加入中科院上海植物生理生态研究所之前,王四宝曾在约翰·霍普金斯大学公共卫生学院疟疾研究所研究蚊子肠道微生物与疟原虫的关系。他发现,疟原虫在进入蚊子的肠腔而未进入肠道细胞前是最薄弱的时候。“有一万个疟原虫通过吸血到蚊子的肠腔里面,最后一般是有5个左右能够成功地发育到进入肠道细胞的阶段,很多被杀死了”,王四宝介绍说。

根据这个原理,王四宝认为,如果能够运用生物工程的方法对蚊子肠道细菌进行改良,使得它来表达一些能够杀死疟原虫的小肽或蛋白,就可以特异性地杀灭蚊子肠道里的疟原虫。

如何将抗疟细菌引入到整个疟蚊种群?这是一个充满挑战的问题。在过去的很多文献报道中,很多昆虫可以将一些细菌、真菌通过产卵进行垂直传播。“如果我们能够得到一株细菌,它不仅能够在肠道里面稳定地定殖,同时能够随着蚊子的产卵进行垂直传播,那所有的问题都解决了。”王四宝说。

2012年下半年,在解剖一只蚊子的卵巢时,王四宝突然发现显微镜下蚊子的卵巢的表面好像有东西在游动。他和同事大吃一惊。当他们把显微镜的倍数放大:原来是细菌!

当然,发现细菌只是研究的开始。把这株沙雷氏菌属细菌AS1分离之后,通过糖水喂养蚊子,王四宝和同事发现,这个细菌能够稳定地定殖在肠道里,并且在蚊子吸血24小时后有200倍的增殖。同时,他们发现细菌能够突破肠道的屏障,转移到蚊子的血腔之中,从而定殖在蚊子卵巢里。“蚊子产卵的时候细菌就会附着在卵壳的表面,只要带沙雷氏菌属细菌AS1的蚊子把卵产在水沟,这个卵的表面携带的细菌就会在水体里面繁殖,其他的雌蚊把这个卵产在这个小水沟里面,它的下一代所有的幼虫都能够获得我们的这个细菌。”王四宝说。随后,他们又确认了这种细菌可以附着在雄蚊的附腺部位,“这样的话它通过交配,通过精液可以传递给雌蚊”。而当雄蚊和雌蚊交配后,下一代所有的幼虫和成虫都能够感染这个细菌,连续饲养三代也是同样的结果。

为了增强AS1抗疟的效果,研究人员又选择了5种不同杀灭疟原虫机制的基因,通过基因工程使得针对疟原虫的小肽或抗体整合到细菌的染色体里并分泌表达。 “疟原虫要入侵肠道细胞,不是说什么地方都可以入侵,必须疟原虫表面有一个配体,这就好像是锁孔和钥匙的关系,配体必须要匹配蚊子肠道细胞表面的受体,而我们的小肽就能够去跟这个锁孔结合,相当于堵住了锁孔,疟原虫就进不去了。”王四宝解释说。值得关注的是,这个用于分泌表达抗疟基因的系统由三个蛋白组成,组装成一个通道,包括一个叫做HasA的蛋白,而HasA蛋白有一个分泌的信号肽,这就使得融合的蛋白能够穿过细菌的细胞膜自由扩散,靶向疟原虫。

“这是一个令人鼓舞的突破,” 密歇根州立大学微生物与分子遗传学系副教授奚志勇告诉《知识分子》。奚志勇也担任中山大学一密歇根州立大学热带病虫媒控制联合研究中心的主任,主要研究蚊子中沃尔巴克氏体与登革热病毒的互作关系。

“长期以来,在实验室的条件下可成熟地通过蚊子基因改造或改变其携带的微生物来降低甚至阻断蚊子传播疾病的能力,但一直困扰于如何安全地让这种抗病性状在疾病流行区扩散出去来替换野外的传病蚊种。”奚志勇介绍说,“我们研究的共生菌沃尔巴克氏体可以通过操作蚊子生殖和雌蚊垂直传播来完成这步替换,王教授这次发现的沙雷氏菌则通过雌蚊生殖垂直传播、雄蚊交配平行传播、幼虫经口感染几个途径同步传播,故扩散的速度快。相比与我们的沃尔巴克氏体需要7代,沙雷氏菌能在一代内就完成扩散和种群替换,极大增加该技术在疾病突发时应用的实用性。”他期待未来沙雷氏菌技术能加快完成实验室阶段的工作,开启转化现场应用测试。

不过,虽然实验室数据表明AS1可以在不同种疟蚊间进行传播,张青锋评论说,但是在野外蚊种中的传播效率、携带这种菌株的长期稳定性有待进一步探索。

“但是无论如何,这个方法既然能降低疟蚊携带疟原虫卵囊的数量,就应该具备了通过在野外蚊种中传播AS1, 从而减少人类感染疟疾几率的很大潜力,这是毋庸置疑的。”张青锋说。